资源类型

期刊论文 706

会议视频 9

年份

2023 56

2022 64

2021 51

2020 51

2019 57

2018 47

2017 43

2016 29

2015 28

2014 31

2013 26

2012 32

2011 16

2010 32

2009 19

2008 34

2007 29

2006 12

2005 10

2004 14

展开 ︾

关键词

优化 18

多目标优化 9

优化设计 8

遗传算法 6

稳健设计 4

不确定性 3

智能制造 3

能源 3

一阶分析法 2

三维 2

五品联动 2

仿真优化 2

分布式优化 2

动态规划 2

可视化仿真 2

可靠性灵敏度 2

指标体系 2

粒子群优化算法 2

量纲分析 2

展开 ︾

检索范围:

排序: 展示方式:

Multi-dimensional optimization for approximate near-threshold computing

Jing Wang, Wei-wei Liang, Yue-hua Niu, Lan Gao, Wei-gong Zhang,jwang@cnu.edu.cn,zwg771@cnu.edu.cn

《信息与电子工程前沿(英文)》 2020年 第21卷 第10期   页码 1413-1534 doi: 10.1631/FITEE.2000089

摘要: The demise of Dennard’s scaling has created both power and utilization wall challenges for computer systems. As transistors operating in the near-threshold region are able to obtain flexible trade-offs between power and , it is regarded as an alternative solution to the scaling challenge. A reduction in supply voltage will nevertheless generate significant reliability challenges, while maintaining an error-free system that generates high costs in both and consumption. The main purpose of research on computer architecture has therefore shifted from improvement to complex multi-objective optimization. In this paper, we propose a three-dimensional optimization approach which can effectively identify the best system configuration to establish a balance among , , and reliability. We use a dynamic programming algorithm to determine the proper voltage and approximate level based on three predictors: system , consumption, and output quality. We propose an which uses a hardware/software co-design fault injection platform to evaluate the impact of the error on output quality under (NTC). Evaluation results demonstrate that our approach can lead to a 28% improvement in output quality with a 10% drop in overall efficiency; this translates to an approximately 20% average improvement in accuracy, power, and .

Conceptual design of compliant mechanisms using level set method

Shi-kui CHEN, Michael Yu WANG

《机械工程前沿(英文)》 2006年 第1卷 第2期   页码 131-145 doi: 10.1007/s11465-006-0018-y

摘要: We propose a level set method-based framework for the conceptual design of compliant mechanisms. In this method, the compliant mechanism design problem is recast as an infinite dimensional optimization problem, where the design variable is the geometric shape of the compliant mechanism and the goal is to find a suitable shape in the admissible design space so that the objective functional can reach a minimum. The geometric shape of the compliant mechanism is represented as the zero level set of a one-higher dimensional level set function, and the dynamic variations of the shape are governed by the Hamilton-Jacobi partial differential equation. The application of level set methods endows the optimization process with the particular quality that topological changes of the boundary, such as merging or splitting, can be handled in a natural fashion. By making a connection between the velocity field in the Hamilton-Jacobi partial differential equation with the shape gradient of the objective functional, we go further to transform the optimization problem into that of finding a steady-state solution of the partial differential equation. Besides the above-mentioned methodological issues, some numerical examples together with prototypes are presented to validate the performance of the method.

关键词: splitting     minimum     dimensional optimization     Hamilton-Jacobi     topological    

基于增益调度控制和高保真飞机模型的实时四维轨迹生成 Article

Olusayo Obajemu, Mahdi Mahfouf, Lohithaksha M. Maiyar, Abrar Al-Hindi, Michal Weiszer, Jun Chen

《工程(英文)》 2021年 第7卷 第4期   页码 495-506 doi: 10.1016/j.eng.2021.01.009

摘要:

Aircraft ground movement plays a key role in improving airport efficiency, as it acts as a link to all other ground operations. Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations. Moreover, autonomous taxiing is envisioned as a key component in future digitalized airports. However, state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases. The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions. This paper proposes a new approach for generating efficient four-dimensional trajectories (4DTs) on the basis of a high-fidelity aircraft model and gainscheduling control strategy. Working in conjunction with a routing and scheduling algorithm that determines the taxi route, waypoints, and time deadlines, the proposed approach generates fuel-efficient 4DTs in real time, while respecting operational constraints. The proposed approach can be used in two contexts: ① as a reactive decision support tool to generate new trajectories that can resolve unprecedented events; and ② as an autopilot system for both partial and fully autonomous taxiing. The proposed methodology is realistic and simple to implement. Moreover, simulation studies show that the proposed approach is capable of providing an up to 11% reduction in the fuel consumed during the taxiing of a large Boeing 747 jumbo jet.

关键词: Aircraft model     Intelligent taxiing     Optimization     Four-dimensional trajectory    

基于竞争的二进制多目标灰狼算法的快速紧凑天线拓扑优化 Research Article

董健,袁霞,王蒙

《信息与电子工程前沿(英文)》 2022年 第23卷 第9期   页码 1390-1406 doi: 10.1631/FITEE.2100420

摘要: 为降低传统多目标天线拓扑优化问题的计算量,本文提出一种基于竞争的二进制多目标灰狼优化算法(CBMOGWO)。该方法引入种群竞争机制,以减轻电磁(EM)仿真的负担并获取适当的适应度值。此外,我们引入余弦振荡函数来改进原始二进制多目标灰狼优化算法(BMOGWO)的线性收敛因子,以在探索和开发之间达到良好平衡。然后,通过与原始BMOGWO和传统二进制多目标粒子群优化(BMOPSO)在12个多目标优化测试问题(MOTPs)和4个多目标背包问题(MOKPs)上比较,验证了CBMOGWO的性能。最后,通过具有高维混合设计变量和多个目标的紧凑型高隔离双频多输入多输出(MIMO)天线的示例,验证了我们的方法在降低计算成本方面的有效性。实验结果表明,与传统方法相比,CBMOGWO节省近一半的计算成本,这表明我们的方法对于复杂天线拓扑优化问题是高效的。它为基于多目标进化算法(MOEA)以灵活高效的方式探索新的和意想不到的天线结构提供了新思路。

关键词: 天线拓扑优化;多目标灰狼算法;高维混合变量;快速设计    

Three-dimensional stability analysis of the dam foundation at Baise

XU Qianjun, LI Xu, CHEN Zuyu

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 217-221 doi: 10.1007/s11709-007-0026-y

摘要: It is usually difficult to determine the actual safety factors of rock masses in an ordinary two-dimensional stability analysis if the safety factors of the different cross sections in the rock mass vary significantly. In addition to the actual slope, arch dam abutment, and the actual foundation of a high building, another example is that the different cross sections of the foundation in the monolith of a gravity dam vary significantly, just like the condition at the overflow dam in the Baise project. A three-dimensional stability analysis method based on the upper-bound theorem was employed to solve this problem. The parameters used in the analysis were obtained from geomechanics tests, as well as continuity simulations of the randomly distributed joints. Two failure patterns against sliding are analyzed. One pattern is the foundation slide along deep-seated planes which were determined by calculations. The other pattern is the foundation slide along the planes across the bottom of the high steps in the foundation pit. The results indicate that a special overflow dam monolith can be considered to be safe in case of considering the three dimensional effect. However, a key wall with a depth of 5m must be constructed at the upper side of this monolith in order to ensure the safety of the foundation.

关键词: ordinary two-dimensional     randomly     monolith     three-dimensional stability     different    

Optimum design of a channel roughened by dimples to improve cooling performance

Abdus SAMAD, Ki-Don LEE, Kwang-Yong KIM, Jin-Hyuk KIM,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 262-268 doi: 10.1007/s11708-010-0012-2

摘要: Staggered arrays of dimples imprinted on opposite surfaces of an internal flow channel have been formulated numerically to enhance turbulent heat transfer compromising with pressure drop. The channel is simulated with the help of three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis. Three non-dimensional design variables based on dimple size and channel dimensions and two objectives related to heat transfer and pressure drag have been considered for shape optimization. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective and polynomial response surface approximation (RSA) coupling with a gradient based search algorithm has been implemented as optimization technique. By the present effort, heat transfer rate is increased much higher than pressure drop and the thermal performance also has shown improvement for the optimum design as compared to the reference one. The optimum design produces lower channel height, wider dimple spacing, and deeper dimple as compared to the reference one.

关键词: Staggered     three-dimensional Reynolds-averaged     multi-objective optimization     reference     transfer    

A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0688-0

摘要: The use of artificial intelligence to process sensor data and predict the dimensional accuracy of machined parts is of great interest to the manufacturing community and can facilitate the intelligent production of many key engineering components. In this study, we develop a predictive model of the dimensional accuracy for precision milling of thin-walled structural components. The aim is to classify three typical features of a structural component—squares, slots, and holes—into various categories based on their dimensional errors (i.e., “high precision,” “pass,” and “unqualified”). Two different types of classification schemes have been considered in this study: those that perform feature extraction by using the convolutional neural networks and those based on an explicit feature extraction procedure. The classification accuracy of the popular machine learning methods has been evaluated in comparison with the proposed deep learning model. Based on the experimental data collected during the milling experiments, the proposed model proved to be capable of predicting dimensional accuracy using cutting parameters (i.e., “static features”) and cutting-force data (i.e., “dynamic features”). The average classification accuracy obtained using the proposed deep learning model was 9.55% higher than the best machine learning algorithm considered in this paper. Moreover, the robustness of the hybrid model has been studied by considering the white Gaussian and coherent noises. Hence, the proposed hybrid model provides an efficient way of fusing different sources of process data and can be adopted for prediction of the machining quality in noisy environments.

关键词: precision milling     dimensional accuracy     cutting force     convolutional neural networks     coherent noise    

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 486-494 doi: 10.1007/s11709-018-0491-5

摘要: During the last decade, numerous high-quality two-dimensional (2D) materials with semiconducting electronic character have been synthesized. Recent experimental study (Sci. Adv. 2017;3: e1700481) nevertheless confirmed that 2D ZrSe and HfSe are among the best candidates to replace the silicon in nanoelectronics owing to their moderate band-gap. We accordingly conducted first-principles calculations to explore the mechanical and electronic responses of not only ZrSe and HfSe , but also ZrS and HfS in their single-layer and free-standing form. We particularly studied the possibility of engineering of the electronic properties of these attractive 2D materials using the biaxial or uniaxial tensile loadings. The comprehensive insight provided concerning the intrinsic properties of HfS , HfSe , ZrS , and ZrSe can be useful for their future applications in nanodevices.

关键词: 2D materials     mechanical     electronic     DFT    

A dimensional analysis on asphalt binder fracture and fatigue cracking

Qian ZHAO, Zhoujing YE

《结构与土木工程前沿(英文)》 2018年 第12卷 第2期   页码 201-206 doi: 10.1007/s11709-017-0402-1

摘要: Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckingham Theorem and -integral analysis based on classic fracture mechanics, to evaluate the fracture and fatigue on asphalt binder. It is discovered that the dimensional analysis could provide a new perspective to analyze the asphalt fracture and fatigue cracking mechanism.

关键词: Dimensional analysis     asphalt     fracture     fatigue cracking    

Inner strain determination of three-dimensional braided preforms with co-braided optical fiber sensors

LI Xianghua, LIU Xiaohui, YUAN Shenfang

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 416-420 doi: 10.1007/s11465-008-0062-x

摘要: The experimental characterization of three-dimensional (3-D) braided composites is extremely important for their design and analysis. Because of their desirable attributes and outstanding performance, optical fiber sensors (OFSs) can be embedded to monitor mechanical properties of textile composites. This paper discusses two techniques to incorporate different OFSs into 3-D braided composite preforms. The operating principle of various sensor systems is first conducted. Experiments using Michelson interferometers, FBG sensors, and micro-bend sensors are performed to verify the concept of the proposed method. Strain curves of various OFSs tests are finally compared, and they all exhibit good linearity.

关键词: different     experimental characterization     three-dimensional     composite     micro-bend    

Numerical simulation of three-dimensional turbulent flow in multistage axial compressor blade row

JIANG Jian, LIU Bo, WANG Yangang, NAN Xiangyi

《能源前沿(英文)》 2008年 第2卷 第3期   页码 320-325 doi: 10.1007/s11708-008-0041-2

摘要: Numerical simulation of three-dimensional turbulent flow in a multistage axial compressor blade row is conducted. A high resolution, third-order ENN scheme is adopted to catch the shockwave and simulate the turbulent flow correctly,

关键词: simulation     compressor     multistage     third-order     three-dimensional turbulent    

Development of rocking constraint device with vertical damping capacity for three-dimensional base-isolated

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 350-367 doi: 10.1007/s11709-022-0923-0

摘要: A new rocking constraint device (RCD) is developed for three-dimensional (3D) base-isolated frame structures by connecting a custom-designed cylinder pair to provide vertical damping with replaceable damping components installed outside the cylinders when the superstructure undergoes translational motion, and rocking constraint capacity when the superstructure is susceptible to rocking. Theoretical formulas for calculating the damping and rocking constraint stiffness of the RCD are proposed. Two series of sinusoidal loading tests are conducted at different loading frequencies and amplitudes to verify the damping and rocking constraint performance of the RCD. The test results show that the cylinder without orifices on its piston can provide the desired damping with a replaceable damping component, and that the RCD can effectively suppress rocking. Although the vertical stiffness of an individual cylinder is affected by the location of the replaceable damping component and loading frequency, the average vertical stiffness of the two cylinders, which determines the rocking constraint stiffness of the RCD, is independent of the two factors. Comparisons of the test and theoretical results indicate that the errors of the proposed formulas for calculating the damping and rocking constraint stiffness of the RCD do not exceed 12.9% and 11.0%, respectively.

关键词: three-dimensional isolation     rocking behavior     rocking constraint device     replaceable damping component     sinusoidal test    

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 731-744 doi: 10.1007/s11705-021-2110-6

摘要: Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg–1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.

关键词: catalytic membrane reactor     catalytic ozonation     nanoconfinement     two-dimensional manganese oxide    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Three-dimensional modeling of borehole data cored from engineering rock mass

HE Manchao, LI Xueyuan, LIU Bin, XU Nengxiong

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 334-339 doi: 10.1007/s11709-007-0044-9

摘要: Vast data from the drilling and geophysical prospecting are reliable original information to describe the space state of engineering rock mass, and one of the main difficulties in three-dimensional (3D) modeling of engineering rock mass is the processing of the primary data. From the viewpoint of 3D modeling, the engineering rock masses are classified as four basic types according to their geometric characteristics of geologic structure: (1) continuum rock mass; (2) discontinuous rock mass; (3) overturned fold rock mass and (4) intrusive rock mass. Because drilling data are very important to describe the characters of multi-scale of the spatial data for rock mass, the rule of how to process drilling data is developed to help appropriately display them in the viewpoint of 3D space. According to the characteristics of rock mass layers, the processing method of drilling data for 3D modeling of engineering rock masses, along with the layer thicknesses, is also proposed, including the evaluation rules and the extensive direction for original borehole data. By this method, the typical 3D data modeled is completed and the model form of the engineering rock mass is developed. By this example, it is finally verified that the method presented is successful and feasible to process 3D engineering rock mass.

关键词: three-dimensional     discontinuous     primary     extensive direction     engineering    

标题 作者 时间 类型 操作

Multi-dimensional optimization for approximate near-threshold computing

Jing Wang, Wei-wei Liang, Yue-hua Niu, Lan Gao, Wei-gong Zhang,jwang@cnu.edu.cn,zwg771@cnu.edu.cn

期刊论文

Conceptual design of compliant mechanisms using level set method

Shi-kui CHEN, Michael Yu WANG

期刊论文

基于增益调度控制和高保真飞机模型的实时四维轨迹生成

Olusayo Obajemu, Mahdi Mahfouf, Lohithaksha M. Maiyar, Abrar Al-Hindi, Michal Weiszer, Jun Chen

期刊论文

基于竞争的二进制多目标灰狼算法的快速紧凑天线拓扑优化

董健,袁霞,王蒙

期刊论文

Three-dimensional stability analysis of the dam foundation at Baise

XU Qianjun, LI Xu, CHEN Zuyu

期刊论文

Optimum design of a channel roughened by dimples to improve cooling performance

Abdus SAMAD, Ki-Don LEE, Kwang-Yong KIM, Jin-Hyuk KIM,

期刊论文

A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of

期刊论文

Electronic and mechanical responses of two-dimensional HfS

Mohammad SALAVATI

期刊论文

A dimensional analysis on asphalt binder fracture and fatigue cracking

Qian ZHAO, Zhoujing YE

期刊论文

Inner strain determination of three-dimensional braided preforms with co-braided optical fiber sensors

LI Xianghua, LIU Xiaohui, YUAN Shenfang

期刊论文

Numerical simulation of three-dimensional turbulent flow in multistage axial compressor blade row

JIANG Jian, LIU Bo, WANG Yangang, NAN Xiangyi

期刊论文

Development of rocking constraint device with vertical damping capacity for three-dimensional base-isolated

期刊论文

Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Three-dimensional modeling of borehole data cored from engineering rock mass

HE Manchao, LI Xueyuan, LIU Bin, XU Nengxiong

期刊论文